1 minute read

You are given a 0-indexed array of integers nums of length n. You are initially positioned at index 0.

Each element nums[i] represents the maximum length of a forward jump from index i. In other words, if you are at index i, you can jump to any index (i + j) where:

0 <= j <= nums[i] and i + j < n

Return the minimum number of jumps to reach index n - 1. The test cases are generated such that you can reach index n - 1.


Example 1:

Input: nums = [2,3,1,1,4]
Output: 2
Explanation: The minimum number of jumps to reach the last index is 2. Jump 1 step from index 0 to 1, then 3 steps to the last index.

45. Jump Game II

Pattern Insight 🧰

Pattern: DFS or Greedy Trigger:

  • if you are at index i, you can jump to any index (i + j) where: 0 <= j <= nums[i] and i + j < n
  • The Minimum number of jump

Time Complexity

O(N)

Space Complexity

O(1)

Edge Cases

nums = [0]
nums = [1, 0]
nums = [1, 1, 1, 1, 1]
nums = [100, 1, 1, 1, 1]
nums = [2, 3, 0, 1, 4]
nums = [3, 2, 1, 0, 4]
nums = new Array(100000).fill(1)
nums = [5, 0, 0, 0, 0, 1]

Core Idea:

  • Find the maximum index to reach by a jump ex) num[0] = 2 => maximum index to reach is 2(you can either go to 1 or 2), then you get a window([1,2]) to check. then , within the window find the maximum index to reach with a jump within the window([1,2]) => num[1]=> 4(maximum index 4) num[2]=>3. Max(4,3) = 4, so index 4 is the maximum index to reach from the window [1,2], at every window’s end, you will jump.
/**
 * @param {number[]} nums
 * @return {number}
 */
var jump = function(nums) {
  const n = nums.length;
  if (n < 2) return 0;

  let jumps = 0;
  let end = 0;       
  let farthest = 0;   

  for (let i = 0; i < n - 1; i++) {
    farthest = Math.max(farthest, i + nums[i]);
    if (i === end) {
      jumps++;
      end = farthest;
      if (end >= n - 1) break; 
    }
  }
  return jumps;
};

Leave a comment